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Residual Spectrume under Isogeny

Residual spectrum

Pop quiz: Which of the following is NOT Jeju famous for?

1

2

3 L-functions.
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Residual spectrum

G: a (split) connected reductive group over F , Z: the center
of G,

ω: a grössencharacter of F

L2(G(F )\G(AF ), ω) = {f : G(A)→ C :∫
G(F )Z(A)\G(A)

|f(g)|2dg <∞

and
f(zg) = ω(z)f(g), z ∈ Z(A), g ∈ G(A)}

with the right regular action of G(A).
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Residual spectrum

B = TU ⊂ P = MN ⊂ G :Borel and parabolic subgroups of
G.
a: the Lie algebra of the connected component of the center
A of M.
Denote by

I(λ, π) = IndGM (π ⊗ exp(〈λ,HP (·)〉)
the induced representation where π is an irreducible
automorphic representation of M =M(A) and λ ∈ a∗C.
Let K be a maximal compact subgroup for which the Iwasawa
decomposition holds

G(A) = K ·N(A)M(A).

Let HP,π,σ be the space of functions

f : N(A)M(F )M(R)◦\G(A)→ C

with certain conditions where σ is an irreducible
representation of K.
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Residual spectrum

Set
IPW (M,π) = {φ : a∗C → HP,π,σ : (∗)}

and (∗) requires φ is of Paley-Wiener type and more.

For φ ∈ I(M,π) and λ ∈ ρP + C+, set

θφ(g) =
( 1

2πi

)dimA/Z
∫
Re(λ)=λ0

E(g, φ(λ), λ)dλ

where E(g, φ(λ), λ) is the Eisenstein series.

Define
L2(G(F )\G(A), ω)(M,π)

to be the space spanned by θφ ∈ IPW (M ′, π′) for

(M ′, π′) ∼ (M,π) ⇐⇒ wM =M ′, wπ ∼= π′.
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Residual spectrum

The theory of Langlands says that

L2(G(F )\G(A), ω) = L2
dis(G(F )\G(A, ω)⊕L2

cont(G(F )\G(A), ω)

where

L2
dis(G(F )\G(A), ω) =

⊕
(M,π) L

2
dis(G(F )\G(A), ω)(M,π)

L2
cusp(G(F )\G(A), ω) =

⊕
(G,π) L

2
dis(G(F )\G(A), ω)(G,π)

and

L2
res(G(F )\G(A), ω) =

⊕
(M,π),M 6=G

L2
dis(G(F )\G(A), ω)(M,π).
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Isogeny

An F -morphism φ : G→ G′ is an isogeny if it is surjective
and the kernel is finite.

An isogeny is central if it induces an isomorphism of Uα onto
its image.

(Example) SpinN → SON is a central isogeny.

Is it true
G � G′ =⇒ G(A) � G′(A)?

Proposition

Let φ : G→ G′ be a central F -isogeny. Then φ(G(A)) is
cocompact in G′(A).
The proof uses Galois cohomology.
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Residual spectrum between reductive group and its derived group

Let G = GD · S be a reductive group and let

φ : GD × S→ G

be the corresponding central isogeny. E.g.,

SLn ×GL1 → GLn.

Notation: ∗D means the object associated with GD. For
example, χ is a character of T(A) ⊂ G(A) and χD is a a
character of TD(A) ⊂ GD(A).
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Residual spectrum between reductive group and its derived group

Theorem
Let φ : GD × S→ G be the central isogeny as before and assume
dimS = 1. Given a unitary character χ of T(F )\T(A), let
χD := φ∗χ|TD(A) and let ω := χ|S(A). Then φ induces an
isomorphism

L2
dis(G(F )\G(A), ω)(T,χ) ≈ L2

dis(G
D(F )\GD(A))(TD,χD).

Conversely, given an irreducible unitary character χD of
TD(F )\TD(A) and a grössencharacter ω of F , there exists a
unitary character χ of T(F )\T(A) such that χD ⊗ ω = φ∗χ and
the isogeny induces

L2
dis(G

D(F )\GD(A))(TD,χ) ≈ L2
dis(G(F )\G(A), ω)(T,χ).
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Residual spectrum between reductive group and its derived group

Residual spectrum of GLn supported on Borel subgroup.) Write a
character of T(A) ⊂ GLn(A) as

χ = χ(µ1, ..., µn).

Moeglin and Waldspurger showed that

L2
dis(GLn(F )\GLn(A), ω)(T,χ) =⇒ χ = χ(µ, · · · , µ), µn = ω

and that it is isomorphic to π = ⊗vπv where

πv = RGLn(λB, χv, w0)IGLn(λB, χv).
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Residual spectrum between reductive group and its derived group

Residual spectrum of SLn supported on Borel subgroup.) Let
G = GLn. Then GD = SLn and there is an isogeny

φ : SLn ×GL1 → GLn.

Given χD (for SLn = GD) and a Grössencharacter ω, there is χ
(for GLn) such that χD ⊗ ω = φ∗χ and

L2
dis(SLn(F )\SLn(A))(TD,χD)

∼= L2
dis(GLn(F )\GLn(A), ω)(T,χ)

Then
χD = 1TD , ω = 1F

and L2
dis(SLn(F )\SLn(A))(TD,1

TD ) is spanned by πD = ⊗vπDv
where

πDv = RGLn(λ
D
B ,1TD , w0)ISLn(λBD ,1TD).
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Residual spectrum between reductive group and its derived group

Remark
The isogengy

Sp2n ×GL1 → GSp2n

and the knowledge of residual spectrum of Sp2n supported on
Borel subgroup ((almost) determined by Henry Kim) determine
that of GSp2n.
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Residual spectrum between reductive group and its derived group

Similarly
Spin2n+1 → SO2n+1

gives

Theorem
L2
dis(Spin2n+1(F )\Spin2n+1(A))(T,χ) = 0 unless χ = φ∗χ′ where

χ′ = χ(µ1, ..., µ1︸ ︷︷ ︸
r1

, . . . , µk, ..., µk︸ ︷︷ ︸
rk

)

where µ1, ..., µk are distinct non-trivial quadratic grössencharacters
of F and r1 ≥ · · · ≥ rk ≥ 1, r1 + · · ·+ rk = n. In such a case, we
have

L2
dis(Spin2n+1(F )\Spin2n+1(A), ω)(T,χ) ≈

L2
dis(SO2n+1(F )\SO2n+1(A))(T ′,χ′).
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Residual spectrum between reductive group and its derived group

Remark

1 There is a series of reductions

reductive → semisimple → almost simple

for consideration of residual spectrum supported on Borel
subgroups.

2 More stories on Arthur parameter, ResE/FG etc.
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Residual spectrum between reductive group and its derived group

Thank you!
Final Exam: How many times are L-functions mentioned in the
talk?

1 Once

2 Twice

3 Many

4 None.
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